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Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories 
with new opportunities to consider novel component production and repair processes, and to 
manufacture materials with tailored response and optimized performance characteristics.  Additive 
Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear 
Weapons.  These mission areas are adapting to these new manufacturing methods, because of potential 
advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to 
embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter 
weight materials. 

To realize the full potential of Additive Manufacturing as a game-changing technology for the NNSA’s 
national security missions; however, significant progress must be made in several key technical areas.  In 
addition to advances in engineering design, process optimization and automation, and accelerated 
feedstock design and manufacture, significant progress must be made in modeling and simulation. 

First and foremost, a more mature understanding of the process-structure-property-performance 
relationships must be developed.  Because Additive Manufacturing processes change the nature of a 
material’s structure below the engineering scale, new models are required to predict materials response 
across the spectrum of relevant length scales, from the atomistic to the continuum.  New diagnostics will 
be required to characterize materials response across these scales.  And not just models, but advanced 
algorithms, next-generation codes, and advanced computer architectures will be required to complement 
the associated modeling activities.  Based on preliminary work in each of these areas, a strong argument 
for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to 
be developed. 

 



Other Manufacturing Processes and Aging 

Of course, Additive Manufacturing is only one process that affects a material’s structure, its properties, 
and its performance.  Any manufacturing process will leave unique fingerprints on a material’s structure 
across the spectrum of length scales from the atomistic to the continuum.  Interestingly, material aging 
will leave a different set of fingerprints, but on the very same components of the material’s structure.  
Therefore, it may be important to note that being predictive with regard to either manufacturing or aging 
requires the same ability to deal with a material’s structure across length scales. 

The NNSA Laboratories have had to think about material structure effects in the past, when we evolved 
our weapons manufacturing from wrought processing to casting.  We are currently considering how 
Additive Manufacturing, and more general Advanced Manufacturing, processes will again require us to 
think about the influence of material structure on component and systems-level response.  And 
discussions about potential use of microwave casting techniques for manufacturing will only confound 
these issues in the future. 

Fundamentally, however, each of these processes can be used to produce a part for use in an engineering 
system.  For instance, a particular system component (such as an automotive engine piston, an aircraft 
component, or a component of a nuclear weapon) can be produced using wrought, traditional casting, 
Additive Manufacturing, or microwave casting technologies.  In each of these cases, the component will 
possess the density, and likely the elastic properties one would expect for the given material used (e.g., 
stainless steel, aluminum, etc.).  However, the details of grain morphology, residual stress state, defect 
structure, etc. likely will all be different.  For applications involving only non-cyclic, small deformations, 
these details may not matter.  However, for deformations through many cycles, such as a piston or an 
aircraft engine will see, these details may become important, even critical.  And when we change the 
materials and operating conditions to those relevant to nuclear weapons safety and performance, where 
the pressures, temperatures, strains, and strain states are much more extreme, it becomes imperative to 
know these details, and their potential effects on component and system-level performance. 

 

Why Material Structure Is Important 

If we are to develop a legitimate predictive capability for modeling materials performance; that is, a 
capability in which we have high confidence in our predictions, then we must have models representative 
of all the relevant physical processes, across the spectrum of length scales, from the atomistic to the 
continuum. 

The atomic length scale is the fundamental scale that determines the single-crystal properties of metals 
and metal alloys.  It is at this scale where we determine the equation-of-state behavior of these materials; 
that is, how a material will respond to varying states of pressure and temperature, and when a material 
will transform from one crystallographic structure to another based on the state. 

In addition to a material’s atomic structure, the defect structure plays a critical role in determining a 
material’s yield strength, damage response, and ultimate failure under loading.  Atomic-level vacancies, 
impurities, and interstitials, along with initial porosity and micro-crack distributions will be prevalent in 
even the most carefully processed materials.  While the dislocation structure and actual dynamics of 
dislocation motion dictate the plastic flow response of a material.  The defects, along with grain boundary 



interfaces, provide impediments to this dislocation motion, thereby actually increasing the material’s yield 
strength.  However, these same defects will serve as potential nucleation sites for porosity, thereby 
decreasing the materials ultimate spall strength.  Ultimately, mesoscale models will become critical for 
understanding which of several potential mechanisms will be triggered in order to accommodate the 
overall deformation. 

Because different manufacturing process will produce different defect structures, dislocation structures, 
and grain morphologies, these processes will necessarily affect the material’s plastic yield strength, 
damage, and failure response to dynamic loading conditions.  Because material aging affects the same 
material structure details, manufacturing and aging considerations are ultimately coupled. 

 

Predictive Capability Requires More Than Just Material Modeling 

Though we have many state-of-the-art models at many of these length scales already, and though we 
likely will make significant progress in developing more physically based, more accurate, and more 
numerically robust models in the future, models at each of the individual scales are just some of the 
necessary “ingredients” of a legitimate predictive capability. 

Of course, none of these models will be useful without the accurate experimental data required to guide 
model development, and to test, calibrate, and validate the models.  Current diagnostic capabilities are 
lacking at the lowest length scales, and nuclear weapons applications often make it difficult to capture 
data in the regimes of pressure, temperature, and strain-rate space where the model development needs 
are greatest. 

The physical processes of atom vibration, dislocation motion, single-crystal deformation, pore growth and 
coalescence each require different mathematical representations and different techniques for their 
solution.  It is not possible to simply incorporate all of these physical mechanisms in a “grand unified” 
model of material response.  Nor will a truly predictive capability be developed by simply passing the 
results of one solution “up the chain” to the next length scale for use.  Rather, the individual models must 
be coupled algorithmically, and thus, appropriate scale-bridging algorithms, or similar techniques, must 
be developed. 

And, of course, appropriate simulation tools must be available that are accepting of this coupled 
algorithmic machinery.  That is, the coupled algorithms and models must be consistent with the native 
hydrodynamic solution techniques and able to be coupled with the other physics in any given systems-
level numerical model. 

Such coupled algorithmic modeling treatments will require significantly more computational resources 
than single-physics, single-scale models, and so the coupled algorithms and simulation tools must be 
designed for the next generation of computer architectures, and those computer architectures must be 
large enough to accommodate meaningful component-level or system-level simulations. 

 

 

 



An Apparent Need for More Computing Resources 

Some researchers are beginning to investigate the development and use of coupled algorithms and 
advanced models within the ASC IC code base.  The results show great promise for our ability to develop 
more sophisticated models, associated scale-bridging algorithms, and to implement this machinery in our 
existing codes.  However, our ability to run simulations of meaningful size is greatly limited by today’s 
computational resources. 

For example, we have conducted coupled multi-physics simulations of shocked polycrystalline metals 
using LANL’s FLAG hydro code.  Figure 1 below shows the results of two different simulations.  Both 
represent a 1 mm by 1 mm two-dimensional stochastic volume element.  The nominal grain size is 200 
µm.  A 5 µm computational cell size achieves a resolved numerical solution, which results in a simulation 
with approximately 40,000 computational cells. 

 

 

Figure 1.  Two-dimensional flyer plate simulations using standard local crystal plasticity and crystal 
plasticity coupled with the transport of dislocations. 

 

A flyer plate simulation is run with a flyer velocity of 270 m/s, which leads to a shock pressure of 
approximately 5 GPa.  Simulations to 0.55 µs after impact are conducted for standard local crystal 
plasticity (no transport of dislocations) and for crystal plasticity coupled to dislocation dynamics (with 
transport of dislocations).  Figure 1 shows the difference in equivalent plastic strain at a time of 0.19 µs 
after impact. 

Note the difference in plastic strain level in the interior of the grains, and most notably, the reduced levels 
of plastic strain at the grain boundaries.  The significance of the difference between the results on the left 
and right of Figure 1 is that by directly coupling the physics pertaining to plasticity within individual crystals 

No Transport With Transport 



with the accompanying motion of dislocations, the case on the right is able to capture the impeded 
magnitude of plastic deformation within the vicinity of grain boundaries.  This non-local material response 
is crucial in order to eventually introduce models of specific grain boundary behavior needed to properly 
model the statistics of damage nucleation at grain boundaries.  On the other hand, the standard crystal 
plasticity model used for the results on the left, knows nothing of the spatial interaction of dislocations 
with grain boundaries, and consequently, grain size and grain boundary characteristics will not affect the 
predicted macroscale response. 

The standard simulations (no transport) require 5 hours on 128 processors of Moonlight to run to 0.55 µs.  
The fully coupled simulations require 72 hours on 128 processors of Moonlight.  So, just coupling the 
dislocation dynamics to the polycrystal scale for a small (1 mm by 1 mm) two-dimensional simulation 
increases computing requirements by more than an order of magnitude.  As a point of reference, 
Moonlight has approximately 5000 processing cores. 

Extending this new capability to three-dimensional simulations poses additional computational 
challenges.  Figure 2 below depicts a 1 mm cube stochastic volume element discretized into a 
computational grid of 20,000 arbitrary polyhedral computational cells.  The simulation results generated 
in FLAG illustrate that this computational grid is far too coarse to be reliable for accurately resolving this 
behavior.  The grid comprised of 500,000 computational cells, shown in Figure 3, better resolves the 
required accuracy; however, linear scaling suggests that a fully coupled calculation will require either 3 
days using over one quarter of Moonlight (1280 processors), or a smaller allocation of 128 processors for 
nearly one month.  

 

 

Figure 2.  Three-dimensional simulations of flyer-plate impact, analogous to those shown in Figure 1. 

SVE (1mm)3, 100 crystals, ~20k zones 



 

 

Figure 3.  A 500,000 cell computational grid required for accurate resolution of the physics. 

 

Clearly, a credible multiscale modeling strategy to bridge between mesoscale calculations such as these, 
and macroscale simulations of some component or system, demands reducing the computational time 
needed for the mesoscale simulations, and there are several paths to achieve such an end.  First, the code 
associated with these models and their coupling can be optimized (acceleration).  Second, alternative 
coupling strategies can be identified to improve numerical stability, and thus attain larger time-step sizes.  
Third, options can be created for running the fully coupled schemes only in areas where it matters; such 
as near grain boundaries (adaptive coupling), and these options can be improved for multi-scale 
applications via adaptive resolution (scale-bridging algorithms).  However, even with all of these advances, 
the target applications may still require Exascale computing, and beyond, for meaningful simulations.  
Therefore, the final path involves running on many, many more cores using hardware advancements 
associated with Exascale computing initiatives. 

Of course, single-component, single-physics simulations, such as the full-up simulation of a flyer plate 
experiment, performed in three dimensions, will require spatial dimensions on the order of centimeters, 
or 10s of centimeters, and thus the simulations shown above in Figure 2 would scale by a factor of 103 to 
106, just to provide the ability to simulate single components.  Full systems would require orders of 
magnitude beyond that.  Additionally, a legitimate predictive capability may require coupling across more 
than one or two length scales.  Additive Manufacturing actually introduces additional structures (e.g., the 
weld bead scalloping and layering) that affect material performance, so it may be necessary to include 
consideration of physics at many length scales (atomic, dislocation, defect structure, grain boundary, 
single crystal, polycrystal, scallop, layer, continuum) into any given simulation.  If the examples above are 
any indication, a reasonable estimate of computational cost could be an order of magnitude per length 
scale per spatial dimension.  And finally, the ultimate goal is to couple materials physics simulations with 
other relevant physics to address NNSA mission needs.  And other physical processes may face the same 
reality; namely, that legitimate predictive capability requires the ability to model lower-length-scale 

SVE (1mm)3, 100 crystals, ~500k zones 



physical processes and bridge across many length scales.  So ultimately, full-system, three-dimensional, 
coupled physics simulations will require Exascale computing and beyond. 

 

Conclusion 

A legitimate predictive capability for assessing material, component, and systems-level performance, 
based upon the manufacturing processes used, can be achieved.  However, such a capability will require 
continued contributions from the physics modeling, algorithm development, code development, 
computer platforms, and experimental communities.  The requirements of models, algorithms, codes, 
computer platforms, and experimental data also point to the need for optimized program integration, if 
we are to meet the grand challenge of material performance prediction based on processing and aging.  
And while Exascale computing is a necessary ingredient, based upon the examples and arguments 
provided above, a final comment would be that computing power alone, and indeed, none of these 
components alone, will achieve the desired objective.  But rather a concerted, coordinated effort by all of 
the components of the ASC Program, along with collaborations with our Science Program colleagues will 
achieve the desired end state. 

 


